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Abstract

A family H of sets is said to be hereditary if all subsets of any

set in H are in H; in other words, H is hereditary if it is a union

of power sets. A family A is said to be intersecting if no two sets

in A are disjoint. A star is a family whose sets contain at least one

common element. An outstanding open conjecture due to Chvátal

claims that among the largest intersecting sub-families of any �nite

hereditary family there is a star. We suggest a weighted version that

generalises both Chvátal's conjecture and a conjecture (due to the

author) on intersecting families of signed sets. Also, we prove the

new conjecture for weighted hereditary families that have a dominant

element, hence generalising various results in the literature.
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1 Some basic de�nitions and notation

We shall use small letters such as x to denote elements of a set or non-
negative integers or functions, capital letters such as X to denote sets, and
calligraphic letters such as F to denote families (i.e. sets whose members are
sets themselves). Unless otherwise stated, it is to be assumed that sets and
families (and sets in families) are �nite.

For any integer n ≥ 1, the set {1, ..., n} of the �rst n positive integers
is denoted by [n]. For a set X, the power set of X (i.e. the family of all
subsets of X) is denoted by 2X , and the family of all r-element subsets of X
is denoted by

(
X
r

)
. An r-set is a set of size r.

We denote the union of all sets in a family F by U(F). For any x ∈ U(F),
we denote the family of those sets in F which contain x by F〈x〉.

A family H is said to be a hereditary family (also called an ideal or a
downset) if all the subsets of any set in H are in H. Clearly a family is
hereditary if and only if it is a union of power sets. A base of H is a set in
H that is not a subset of any other set in H. So a hereditary family is the
union of power sets of its bases.

A family A is said to be intersecting if any two sets in A contain at least
one common element. If the sets in a family A have a common element x
(i.e. A = A〈x〉), then A is said to be a star. So a star is an intersecting
family. The simplest example of an intersecting family that is not a star is
{{1, 2}, {1, 3}, {2, 3}} (i.e.

(
[3]
2

)
).

If U(F) contains an element x such that F〈x〉 is a largest intersecting sub-
family of F (i.e. no intersecting sub-family of F has more sets than F〈x〉),
then we say that F has the star property at x. We simply say that F has the
star property if either U(F) is the empty set ∅ or F has the star property at
some element of U(F).

For a non-empty set X and x, y ∈ X, let λx,y : 2X → 2X be de�ned by

λx,y(A) =

{
(A\{y}) ∪ {x} if y ∈ A and x /∈ A;
A otherwise,

and let Λx,y : 22X → 22X
be the compression operation de�ned by

Λx,y(A) = {λx,y(A) : A ∈ A, λx,y(A) /∈ A} ∪ {A ∈ A : λx,y(A) ∈ A}.

Note that |Λx,y(A)| = |A|. It is well-known, and easy to check, that Λx,y(A)
is intersecting if A is intersecting; [15] is an excellent survey on the proper-
ties and uses of compression (also called shifting) operations in extremal set
theory.

3



If x ∈ U(F) such that λx,y(F ) ∈ F for any F ∈ F and any y ∈ U(F),
then F is said to be compressed with respect to x. A family F ⊆ 2[n] is said
to be left-compressed if λi,j(F ) ∈ F for any F ∈ F and any i, j ∈ [n] with
i < j.

2 Intersecting sub-families of hereditary fami-

lies

The following is a famous longstanding open conjecture in extremal set theory
due to Chvátal.

Conjecture 2.1 ([9]) If H is a hereditary family, then H has the star prop-
erty.

This conjecture was veri�ed for the case whenH is left-compressed by Chvátal
[10] himself. Snevily [24] took this result (together with results in [23, 25])
a signi�cant step forward by verifying Conjecture 2.1 for the case when H is
compressed with respect to an element x of U(H).

Theorem 2.2 ([24]) If a hereditary family H is compressed with respect to
an element x of U(H), then H has the star property at x.

A special case is when the bases of H contain a common element; this was
settled in [23].

Snevily's proof of Theorem 2.2 makes use of the following interesting
result of Berge [2].

Theorem 2.3 ([2]) If H is a hereditary family, then H is a disjoint union
of pairs of disjoint sets, together with ∅ if |H| is odd.

This result was also motivated by Conjecture 2.1, and it implies that the size
of an intersecting sub-family of a hereditary family H cannot be greater than
|H|/2.

For any integer s ≥ 0, let H(s) = {H ∈ H : |H| = s} and H(≤s) = {H ∈
H : |H| ≤ s}. In [5] it is shown that if the size of any base of a hereditary
family H is at least 3

2
(r − 1)2(3r − 4) + r, then for any S ⊆ [r], the union⋃

s∈S H(s) has the star property, and hence the level H(r) and the hereditary
sub-family H(≤r) of H have the star property.

Many other results have been inspired by Conjecture 2.1; see [8, 19].
Interesting variations on this conjecture have been suggested by Snevily; see
[26].
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3 Intersecting families of signed sets

Let x1, ..., xr be the distinct elements of an r-set X, and let y1, ..., yr, k be inte-
gers satisfying 1 ≤ yi ≤ k for all i ∈ [r]. We call the r-set {(x1, y1), ..., (xr, yr)}
a k-signed set on X. For any integer k ≥ 1, we denote the family of all k-
signed sets on X by SX,k, that is,

SX,k = {{(x1, y1), ..., (xr, yr)} : y1, ..., yr ∈ [k]}.

We shall set S∅,k = ∅. For any family F , we denote the union of all families
SF,k with F ∈ F by SF ,k, that is,

SF ,k =
⋃

F∈F

SF,k.

The `signed sets' terminology was introduced in [4] for a setting that can
be re-formulated as S([n]

r ),k
, and the general formulation SF ,k was introduced

in [6], the theme of which is the following conjecture.

Conjecture 3.1 ([6]) For any family F and any integer k ≥ 2, SF ,k has
the star property.

Obviously we cannot replace k ≥ 2 by k ≥ 1, because if F does not have the
star property (for example, F is a non-star intersecting family such as

(
[3]
2

)
),

then neither does SF ,1 (since F and SF ,1 have the same structure). The main
result in the same paper is that this conjecture is true if F is compressed
with respect to an element x of U(F).

Theorem 3.2 ([6]) If a family F is compressed with respect to an element
x of U(F), then SF ,k has the star property at (x, 1) for any k ≥ 2.

This generalises a well-known result that was �rst stated by Meyer [20] and
proved in di�erent ways by Deza and Frankl [11], Bollobás and Leader [4],
Engel [12] and Erd®s et al. [13], and that can be described as saying that
the conjecture is true for F =

(
[n]
r

)
. Berge [3] and Livingston [22] had proved

this for the special case F = {[n]} (other proofs are found in [16, 21]). In [6]
the conjecture is also veri�ed for families F that are uniform (i.e. their sets
are of equal size) and have the star property; Holroyd and Talbot [17] had
essentially proved this in a graph-theoretical context. In [7] the conjecture is
proved for k su�ciently large, depending only on the size of a largest set in
F .

Theorem 3.3 ([7]) Let αF be the size of a largest set in a family F . For
any integer k ≥ max{1, (αF )2(αF − 1)/2}, SF ,k has the star property.

5



4 Intersecting sub-families of weighted heredi-

tary families

Let R denote the set of real numbers. For any family F and any function
w : F → R (which we call a weight function), we denote the sum

∑
F∈F w(F )

(of weights of sets in F) by w(F). If U(F) contains an element x such that
w(A) ≤ w(F〈x〉) for any intersecting sub-family A of F , then we say that
(F , w) has the weighted star property at x. We simply say that (F , w) has
the weighted star property if either U(F) = ∅ or (F , w) has the weighted star
property at some element of U(F).

We suggest a conjecture that relates Conjectures 2.1 and 3.1 in the sense
that it provides a common generalisation.

Conjecture 4.1 If H is a hereditary family and w : H → R such that
w(H) ≥ w(H ′) for any H, H ′ ∈ H with H ⊆ H ′, then (H, w) has the weighted
star property.

Theorem 4.2 If Conjecture 4.1 is true, then Conjectures 2.1 and 3.1 are
true.

Proof. Suppose Conjecture 4.1 is true. Then Conjecture 2.1 follows by
taking w(H) = 1 for all H ∈ H, and Conjecture 3.1 follows immediately
from the following lemma. 2

Lemma 4.3 Let F be a family, and let H =
⋃

F∈F 2F . For any H ∈ H, let
FH = {F ∈ F : H ⊆ F}. Let k ≥ 2 be an integer. Let w : H → R such that
for any H ∈ H,

w(H) =

∣∣∣∣∣ ⋃
F∈FH

{S ∈ SF,k : S ∩ (F × [1]) = H × [1]}

∣∣∣∣∣ .

Then:
(i) H is hereditary;
(ii) w(H) ≥ w(H ′) for any H, H ′ ∈ H with H ⊆ H ′;
(iii) if (H, w) has the weighted star property at an element x of U(H), then
SF ,k has the star property at (x, 1).

This lemma is proved in the next section.
If a family F is compressed with respect to an element x of U(F) and

w(F ) ≤ w(λx,y(F )) for any F ∈ F and any y ∈ U(F), then we say that x is
a dominant element of U(F) under w.

The following is our main result, which establishes Conjecture 4.1 for the
case when U(H) has a dominant element under w.

6



Theorem 4.4 Let H be a hereditary family, and let w : H → R such that
w(H) ≥ w(H ′) for any H, H ′ ∈ H with H ⊆ H ′. If U(H) has a dominant
element x under w, then (H, w) has the weighted star property at x.

Proof. We use induction on |U(H)|. The case |U(H)| ≤ 2 is trivial, so
we assume |U(H)| > 2. Suppose U(H) has a dominant element x under
w. Let A be an intersecting sub-family of H. Let y ∈ U(H)\{x}, and let
B = Λx,y(A). So B is intersecting. Since x is a dominant element of U(H)
under w, we have B ⊂ H and w(A) ≤ w(B).

Let I = H〈y〉, I ′ = {I\{y} : I ∈ I} and J = H\H〈y〉 = {H ∈ H : y /∈
H}. Since H is hereditary, I ′ and J are hereditary, and I ′ ⊆ J . De�ne
v : I ′ → R by v(I) = w(I ∪ {y}) (I ∈ I ′); so v(I) ≥ v(I ′) for any I, I ′ ∈ I ′
with I ⊆ I ′. Note that x is a dominant element of U(I ′) under v and that x
is a dominant element of U(J ) under w.

Let C = {B ∈ B〈y〉 : x ∈ B, B ∩B′ = {y} for some B′ ∈ B〈y〉} and D =
B〈y〉\C. Let C ′ = {C\{y} : C ∈ C}, D′ = {D\{y} : D ∈ D} and E =
B\B〈y〉 = {B ∈ B : y /∈ B}. So C ′,D′ ⊆ I ′ and E ⊆ J . Taking F = C ′ ∪ E ,
we have F ⊆ J as I ′ ⊆ J .

Suppose A ∩ B = {y} for some A, B ∈ D. Then, by de�nition of D, we
have x /∈ A and x /∈ B. Since B = Λx,y(A), λx,y(B) ∈ B. But A∩λx,y(B) = ∅,
which is a contradiction as B is intersecting. So (A ∩ B)\{y} 6= ∅ for any
A, B ∈ D. It follows that D′ is intersecting.

Suppose A ∩B = ∅ for some A, B ∈ F . Since E is an intersecting family
(as E ⊆ B) and each set in C ′ contains x, one of A and B is in E and the other
is in C ′; say A ∈ E and B ∈ C ′. But then A∩(B∪{y}) = ∅ and A, B∪{y} ∈ B,
which is a contradiction as B is intersecting. So F is intersecting.

Since |U(I ′)| and |U(J )| are at most |U(H)\{y}| = |U(H)| − 1, we can
now apply the inductive hypothesis to obtain v(D′) ≤ v(I ′〈x〉) and w(F) ≤
w(J 〈x〉). Since v(D′) = w(D) and v(I ′〈x〉) = w(I〈x〉), we have w(D) ≤
w(I〈x〉).

Suppose C ′∩E contains a set A. So A ∈ B. Let B = A∪{y}. Then B ∈ C
and hence B ∩ B′ = {y} for some B′ ∈ B. But then A ∩ B′ = ∅, which is a
contradiction since B is intersecting. So C ′∩E = ∅ and hence |F| = |C ′|+ |E|.
Therefore w(F) = w(C ′) + w(E).

Bringing all the pieces together and noting that w(C) ≤ w(C ′) (by the
condition on w), we obtain

w(A) ≤ w(B) = w(C) + w(D) + w(E) ≤ w(C ′) + w(I〈x〉) + w(E)

= w(I〈x〉) + w(F) ≤ w(I〈x〉) + w(J 〈x〉) = w(H〈x〉)

as required. 2
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The argument in the above proof is an alternative for the one used by
Snevily [24] for the proof of Theorem 2.2 (and which employs Theorem 2.3);
note that Theorem 2.2 follows from Theorem 4.4 by taking w(H) = 1 for all
H ∈ H. Theorem 3.2 follows from Theorem 4.4 via Lemma 4.3. Theorem 4.4
also has the following consequence.

Corollary 4.5 (See [1, 14]) Let w : 2[n] → R such that w(A) ≥ w(B) for
any A, B ∈ 2[n] with |A| ≤ |B|. Then (2[n], w) has the weighted star property
at any element of [n].

Proof. Obviously 2[n] is hereditary and w obeys the condition in Theo-
rem 4.4. Now let x ∈ [n]. Let C ∈ 2[n], y ∈ [n], D = λx,y(C). Since
|D| = |C|, the condition on w gives us w(D) ≥ w(C) and w(C) ≥ w(D);
hence w(C) = w(λx,y(C)). So x is a dominant element of U(2[n]) = [n] under
w. The result now follows by Theorem 4.4. 2

A nice application of this result is given in [18].

5 Proof of Lemma 4.3

For an n-set X = {x1, ..., xn} and (a, b) ∈ X × [k], let δa,b : S2X ,k → S2X ,k be
de�ned by

δa,b(A) =

{
(A\{(a, b)}) ∪ {(a, 1)} if (a, b) ∈ A;
A otherwise,

and let ∆a,b : 2S2X,k → 2S2X,k be the compression operation de�ned by

∆a,b(A) = {δa,b(A) : A ∈ A, δa,b(A) /∈ A} ∪ {A ∈ A : δa,b(A) ∈ A}.

Note that |∆a,b(A)| = |A| and that, if F ⊆ 2X such that A ⊆ SF ,k, then
∆a,b(A) ⊆ SF ,k. As in the case of Λx,y, ∆a,b(A) is intersecting if A is inter-
secting; moreover, the following holds (see, for example, [7, Corollary 3.2]).

Lemma 5.1 Let X be an n-set {x1, ..., xn}, and let k ≥ 2 be an integer. Let
A be an intersecting sub-family of S2X ,k, and let

A∗ = ∆xn,k ◦ ... ◦∆xn,2 ◦ ... ◦∆x1,k ◦ ... ◦∆x1,2(A).

Then A ∩B ∩ (X × [1]) 6= ∅ for any A, B ∈ A∗.

8



Proof of Lemma 4.3. (i) Trivial.
(ii) Let H, H ′ ∈ H with H ⊆ H ′. Then FH′ ⊆ FH . We have

w(H ′) =
∑

F∈FH′

|{S ∈ SF,k : S ∩ (F × [1]) = H ′ × [1]}| =
∑

F∈FH′

(k − 1)|F |−|H
′|

≤
∑

F∈FH′

(k − 1)|F |−|H| ≤
∑

F∈FH

(k − 1)|F |−|H|

=
∑

F∈FH

|{S ∈ SF,k : S ∩ (F × [1]) = H × [1]}| = w(H).

(iii) Let A be an intersecting sub-family of SF ,k. Let A∗ be as in Lemma 5.1
with X = U(F). Then A∗ ⊆ SF ,k. Let B = {H ∈ H : A ∩ (X × [1]) =
H × [1] for some A ∈ A∗}. By Lemma 5.1, B is an intersecting sub-family of
H. Since A∗ ⊆ SF ,k, we have A∗ ⊆

⋃
B∈B

⋃
F∈FB

{S ∈ SF,k : S ∩ (F × [1]) =
B × [1]}. So |A∗| ≤

∑
B∈B w(B) = w(B) and hence, since |A| = |A∗|,

|A| ≤ w(B).
Now suppose (H, w) has the weighted star property at an element x of

U(H). Then w(B) ≤ w(H〈x〉). We have

w(H〈x〉) =
∑

H∈H〈x〉

w(H) =
∑

H∈H〈x〉

∣∣∣∣∣ ⋃
F∈FH

{S ∈ SF,k : S ∩ (F × [1]) = H × [1]}

∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

H∈H〈x〉

⋃
F∈FH

{S ∈ SF,k : S ∩ (F × [1]) = H × [1]}

∣∣∣∣∣∣ = |SF ,k〈(x, 1)〉| .

Thus, since |A| ≤ w(B) ≤ w(H〈x〉), we have |A| ≤ |SF ,k〈(x, 1)〉|. Hence the
result. 2

References

[1] R. Ahlswede, G.O.H. Katona, Contributions to the geometry of Hamming
spaces, Discrete Math. 17 (1977) 1-22.

[2] C. Berge, A theorem related to the Chvátal conjecture, Proceedings of
the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen,
1975), pp. 35-40. Congressus Numerantium, No. XV, Utilitas Math., Win-
nipeg, Man., 1976.

[3] C. Berge, Nombres de coloration de l'hypergraphe h-parti complet, in:
Hypergraph Seminar (Columbus, Ohio 1972), Lecture Notes in Math.,
Vol. 411, Springer, Berlin, 1974, 13-20.

9



[4] B. Bollobás, I. Leader, An Erd®s-Ko-Rado theorem for signed sets, Com-
put. Math. Appl. 34 (1997) 9-13.

[5] P. Borg, Extremal t-intersecting sub-families of hereditary families, J.
London Math. Soc. 79 (2009) 167-185.

[6] P. Borg, Intersecting systems of signed sets, Electron. J. Combin. 14
(2007) #R41.

[7] P. Borg, On t-intersecting families of signed sets and permutations, Dis-
crete Math. 309 (2009) 3310-3317.

[8] V. Chvátal, http://users.encs.concordia.ca/∼chvatal/conjecture.html.

[9] V. Chvátal, Unsolved Problem No. 7, in: C. Berge, D.K. Ray-Chaudhuri
(Eds.), Hypergraph Seminar, Lecture Notes in Mathematics, Vol. 411,
Springer, Berlin, 1974.

[10] V. Chvátal, Intersecting families of edges in hypergraphs having the
hereditary property, in: C. Berge, D.K. Ray-Chaudhuri (Eds.), Hyper-
graph Seminar, Lecture Notes in Mathematics, Vol. 411, Springer, Berlin,
1974, pp. 61-66.

[11] M. Deza, P. Frankl, The Erd®s-Ko-Rado theorem - 22 years later, SIAM
J. Algebraic Discrete Methods 4 (1983) 419-431.

[12] K. Engel, An Erd®s-Ko-Rado theorem for the subcubes of a cube, Com-
binatorica 4 (1984) 133-140.

[13] P.L. Erd®s, U. Faigle, W. Kern, A group-theoretic setting for some in-
tersecting Sperner families, Combin. Probab. Comput. 1 (1992) 323-334.

[14] P.C. Fishburn, P. Frankl, D. Freed, J.C. Lagarias, A.M. Odlyzko, Prob-
abilities for intersecting systems and random subsets of �nite sets, SIAM
J. Algebr. Discrete Methods 7 (1986) 73-79.

[15] P. Frankl, The shifting technique in extremal set theory, in: C. White-
head (Ed.), Combinatorial Surveys, Cambridge Univ. Press, London/New
York, 1987, pp. 81-110.

[16] H.-D.O.F. Gronau, More on the Erd®s-Ko-Rado theorem for integer se-
quences, J. Combin. Theory Ser. A 35 (1983) 279-288.

[17] F.C. Holroyd and J. Talbot, Graphs with the Erd®s-Ko-Rado property,
Discrete Math. 293 (2005) 165-176.

10



[18] C. Y. Ku, D. Renshaw, Erd®s-Ko-Rado theorems for permutations and
set partitions, J. Combin. Theory Ser. A 115 (2008) 1008-1020.

[19] D. Miklós, Some results related to a conjecture of Chvátal, Ph.D. Dis-
sertation, Ohio State University, 1986.

[20] J.-C. Meyer, Quelques problèmes concernant les cliques des hyper-
graphes k-complets et q-parti h-complets, in: Hypergraph Seminar
(Columbus, Ohio 1972), Lecture Notes in Math., Vol. 411, Springer, Berlin,
1974, 127-139.

[21] A. Moon, An analogue of the Erd®s-Ko-Rado theorem for the Hamming
schemes H(n, q), J. Combin. Theory Ser. A 32 (1982) 386-390.

[22] M.L. Livingston, An ordered version of the Erd®s-Ko-Rado Theorem, J.
Combin. Theory Ser. A 26 (1979), 162-165.

[23] J. Schönheim, Hereditary systems and Chvátal's conjecture, Proceedings
of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen,
1975), pp. 537-539. Congressus Numerantium, No. XV, Utilitas Math.,
Winnipeg, Man., 1976.

[24] H.S. Snevily, A new result on Chvátal's conjecture, J. Combin. Theory
Ser. A 61 (1992) 137-141.

[25] D.L. Wang and P. Wang, Some results about the Chvátal conjecture,
Discrete Math. 24 (1978) 95-101.

[26] D.B. West, http://www.math.uiuc.edu/∼west/regs/chvatal.html.

11


