On Chvátal's conjecture and a conjecture on families of signed sets

Peter Borg

Department of Mathematics, University of Malta, Msida MSD 2080, Malta p.borg.02@cantab.net

2nd December 2010

Abstract

A family \mathcal{H} of sets is said to be *hereditary* if all subsets of any set in \mathcal{H} are in \mathcal{H} ; in other words, \mathcal{H} is hereditary if it is a union of *power sets*. A family \mathcal{A} is said to be *intersecting* if no two sets in \mathcal{A} are disjoint. A *star* is a family whose sets contain at least one common element. An outstanding open conjecture due to Chvátal claims that among the largest intersecting sub-families of any finite hereditary family there is a star. We suggest a weighted version that generalises both Chvátal's conjecture and a conjecture (due to the author) on intersecting families of *signed sets*. Also, we prove the new conjecture for weighted hereditary families that have a *dominant element*, hence generalising various results in the literature. On Chvátal's conjecture Peter Borg Department of Mathematics, University of Malta, Msida MSD 2080, Malta p.borg.02@cantab.net

1 Some basic definitions and notation

We shall use small letters such as x to denote elements of a set or nonnegative integers or functions, capital letters such as X to denote sets, and calligraphic letters such as \mathcal{F} to denote *families* (i.e. sets whose members are sets themselves). Unless otherwise stated, it is to be assumed that sets and families (and sets in families) are *finite*.

For any integer $n \ge 1$, the set $\{1, ..., n\}$ of the first n positive integers is denoted by [n]. For a set X, the *power set of* X (i.e. the family of all subsets of X) is denoted by 2^X , and the family of all r-element subsets of Xis denoted by $\binom{X}{r}$. An r-set is a set of size r.

We denote the union of all sets in a family \mathcal{F} by $U(\mathcal{F})$. For any $x \in U(\mathcal{F})$, we denote the family of those sets in \mathcal{F} which contain x by $\mathcal{F}\langle x \rangle$.

A family \mathcal{H} is said to be a *hereditary family* (also called an *ideal* or a *downset*) if all the subsets of any set in \mathcal{H} are in \mathcal{H} . Clearly a family is hereditary if and only if it is a union of power sets. A *base* of \mathcal{H} is a set in \mathcal{H} that is not a subset of any other set in \mathcal{H} . So a hereditary family is the union of power sets of its bases.

A family \mathcal{A} is said to be *intersecting* if any two sets in \mathcal{A} contain at least one common element. If the sets in a family \mathcal{A} have a common element x(i.e. $\mathcal{A} = \mathcal{A}\langle x \rangle$), then \mathcal{A} is said to be a *star*. So a star is an intersecting family. The simplest example of an intersecting family that is not a star is $\{\{1,2\},\{1,3\},\{2,3\}\}$ (i.e. $\binom{[3]}{2}$).

If $U(\mathcal{F})$ contains an element x such that $\mathcal{F}\langle x \rangle$ is a largest intersecting subfamily of \mathcal{F} (i.e. no intersecting sub-family of \mathcal{F} has more sets than $\mathcal{F}\langle x \rangle$), then we say that \mathcal{F} has the *star property at* x. We simply say that \mathcal{F} has the *star property* if either $U(\mathcal{F})$ is the empty set \emptyset or \mathcal{F} has the star property at some element of $U(\mathcal{F})$.

For a non-empty set X and $x, y \in X$, let $\lambda_{x,y} \colon 2^X \to 2^X$ be defined by

$$\lambda_{x,y}(A) = \begin{cases} (A \setminus \{y\}) \cup \{x\} & \text{if } y \in A \text{ and } x \notin A; \\ A & \text{otherwise,} \end{cases}$$

and let $\Lambda_{x,y}: 2^{2^X} \to 2^{2^X}$ be the compression operation defined by

$$\Lambda_{x,y}(\mathcal{A}) = \{\lambda_{x,y}(A) \colon A \in \mathcal{A}, \lambda_{x,y}(A) \notin \mathcal{A}\} \cup \{A \in \mathcal{A} \colon \lambda_{x,y}(A) \in \mathcal{A}\}.$$

Note that $|\Lambda_{x,y}(\mathcal{A})| = |\mathcal{A}|$. It is well-known, and easy to check, that $\Lambda_{x,y}(\mathcal{A})$ is intersecting if \mathcal{A} is intersecting; [15] is an excellent survey on the properties and uses of compression (also called *shifting*) operations in extremal set theory.

If $x \in U(\mathcal{F})$ such that $\lambda_{x,y}(F) \in \mathcal{F}$ for any $F \in \mathcal{F}$ and any $y \in U(\mathcal{F})$, then \mathcal{F} is said to be *compressed with respect to* x. A family $\mathcal{F} \subseteq 2^{[n]}$ is said to be *left-compressed* if $\lambda_{i,j}(F) \in \mathcal{F}$ for any $F \in \mathcal{F}$ and any $i, j \in [n]$ with i < j.

2 Intersecting sub-families of hereditary families

The following is a famous longstanding open conjecture in extremal set theory due to Chvátal.

Conjecture 2.1 ([9]) If \mathcal{H} is a hereditary family, then \mathcal{H} has the star property.

This conjecture was verified for the case when \mathcal{H} is left-compressed by Chvátal [10] himself. Snevily [24] took this result (together with results in [23, 25]) a significant step forward by verifying Conjecture 2.1 for the case when \mathcal{H} is compressed with respect to an element x of $U(\mathcal{H})$.

Theorem 2.2 ([24]) If a hereditary family \mathcal{H} is compressed with respect to an element x of $U(\mathcal{H})$, then \mathcal{H} has the star property at x.

A special case is when the bases of \mathcal{H} contain a common element; this was settled in [23].

Snevily's proof of Theorem 2.2 makes use of the following interesting result of Berge [2].

Theorem 2.3 ([2]) If \mathcal{H} is a hereditary family, then \mathcal{H} is a disjoint union of pairs of disjoint sets, together with \emptyset if $|\mathcal{H}|$ is odd.

This result was also motivated by Conjecture 2.1, and it implies that the size of an intersecting sub-family of a hereditary family \mathcal{H} cannot be greater than $|\mathcal{H}|/2$.

For any integer $s \ge 0$, let $\mathcal{H}^{(s)} = \{H \in \mathcal{H} : |H| = s\}$ and $\mathcal{H}^{(\le s)} = \{H \in \mathcal{H} : |H| \le s\}$. In [5] it is shown that if the size of any base of a hereditary family \mathcal{H} is at least $\frac{3}{2}(r-1)^2(3r-4)+r$, then for any $S \subseteq [r]$, the union $\bigcup_{s\in S} \mathcal{H}^{(s)}$ has the star property, and hence the *level* $\mathcal{H}^{(r)}$ and the hereditary sub-family $\mathcal{H}^{(\le r)}$ of \mathcal{H} have the star property.

Many other results have been inspired by Conjecture 2.1; see [8, 19]. Interesting variations on this conjecture have been suggested by Snevily; see [26].

3 Intersecting families of signed sets

Let $x_1, ..., x_r$ be the distinct elements of an *r*-set *X*, and let $y_1, ..., y_r, k$ be integers satisfying $1 \le y_i \le k$ for all $i \in [r]$. We call the *r*-set $\{(x_1, y_1), ..., (x_r, y_r)\}$ a *k*-signed set on *X*. For any integer $k \ge 1$, we denote the family of all *k*-signed sets on *X* by $\mathcal{S}_{X,k}$, that is,

$$\mathcal{S}_{X,k} = \{\{(x_1, y_1), ..., (x_r, y_r)\} \colon y_1, ..., y_r \in [k]\}.$$

We shall set $S_{\emptyset,k} = \emptyset$. For any family \mathcal{F} , we denote the union of all families $S_{F,k}$ with $F \in \mathcal{F}$ by $S_{\mathcal{F},k}$, that is,

$$\mathcal{S}_{\mathcal{F},k} = \bigcup_{F \in \mathcal{F}} \mathcal{S}_{F,k}.$$

The 'signed sets' terminology was introduced in [4] for a setting that can be re-formulated as $S_{\binom{[n]}{r},k}$, and the general formulation $S_{\mathcal{F},k}$ was introduced in [6], the theme of which is the following conjecture.

Conjecture 3.1 ([6]) For any family \mathcal{F} and any integer $k \geq 2$, $\mathcal{S}_{\mathcal{F},k}$ has the star property.

Obviously we cannot replace $k \geq 2$ by $k \geq 1$, because if \mathcal{F} does not have the star property (for example, \mathcal{F} is a non-star intersecting family such as $\binom{[3]}{2}$), then neither does $\mathcal{S}_{\mathcal{F},1}$ (since \mathcal{F} and $\mathcal{S}_{\mathcal{F},1}$ have the same structure). The main result in the same paper is that this conjecture is true if \mathcal{F} is compressed with respect to an element x of $U(\mathcal{F})$.

Theorem 3.2 ([6]) If a family \mathcal{F} is compressed with respect to an element x of $U(\mathcal{F})$, then $\mathcal{S}_{\mathcal{F},k}$ has the star property at (x, 1) for any $k \geq 2$.

This generalises a well-known result that was first stated by Meyer [20] and proved in different ways by Deza and Frankl [11], Bollobás and Leader [4], Engel [12] and Erdős et al. [13], and that can be described as saying that the conjecture is true for $\mathcal{F} = {[n] \choose r}$. Berge [3] and Livingston [22] had proved this for the special case $\mathcal{F} = \{[n]\}$ (other proofs are found in [16, 21]). In [6] the conjecture is also verified for families \mathcal{F} that are uniform (i.e. their sets are of equal size) and have the star property; Holroyd and Talbot [17] had essentially proved this in a graph-theoretical context. In [7] the conjecture is proved for k sufficiently large, depending only on the size of a largest set in \mathcal{F} .

Theorem 3.3 ([7]) Let $\alpha_{\mathcal{F}}$ be the size of a largest set in a family \mathcal{F} . For any integer $k \geq \max\{1, (\alpha_{\mathcal{F}})^2(\alpha_{\mathcal{F}}-1)/2\}, S_{\mathcal{F},k}$ has the star property.

4 Intersecting sub-families of weighted hereditary families

Let \mathbb{R} denote the set of real numbers. For any family \mathcal{F} and any function $w: \mathcal{F} \to \mathbb{R}$ (which we call a *weight function*), we denote the sum $\sum_{F \in \mathcal{F}} w(F)$ (of weights of sets in \mathcal{F}) by $w(\mathcal{F})$. If $U(\mathcal{F})$ contains an element x such that $w(\mathcal{A}) \leq w(\mathcal{F}\langle x \rangle)$ for any intersecting sub-family \mathcal{A} of \mathcal{F} , then we say that (\mathcal{F}, w) has the weighted star property at x. We simply say that (\mathcal{F}, w) has the weighted star property if either $U(\mathcal{F}) = \emptyset$ or (\mathcal{F}, w) has the weighted star property at some element of $U(\mathcal{F})$.

We suggest a conjecture that relates Conjectures 2.1 and 3.1 in the sense that it provides a common generalisation.

Conjecture 4.1 If \mathcal{H} is a hereditary family and $w: \mathcal{H} \to \mathbb{R}$ such that $w(H) \ge w(H')$ for any $H, H' \in \mathcal{H}$ with $H \subseteq H'$, then (\mathcal{H}, w) has the weighted star property.

Theorem 4.2 If Conjecture 4.1 is true, then Conjectures 2.1 and 3.1 are true.

Proof. Suppose Conjecture 4.1 is true. Then Conjecture 2.1 follows by taking w(H) = 1 for all $H \in \mathcal{H}$, and Conjecture 3.1 follows immediately from the following lemma.

Lemma 4.3 Let \mathcal{F} be a family, and let $\mathcal{H} = \bigcup_{F \in \mathcal{F}} 2^F$. For any $H \in \mathcal{H}$, let $\mathcal{F}_H = \{F \in \mathcal{F} : H \subseteq F\}$. Let $k \geq 2$ be an integer. Let $w : \mathcal{H} \to \mathbb{R}$ such that for any $H \in \mathcal{H}$,

$$w(H) = \left| \bigcup_{F \in \mathcal{F}_H} \{ S \in \mathcal{S}_{F,k} \colon S \cap (F \times [1]) = H \times [1] \} \right|.$$

Then:

(i) \mathcal{H} is hereditary;

(ii) $w(H) \ge w(H')$ for any $H, H' \in \mathcal{H}$ with $H \subseteq H'$;

(iii) if (\mathcal{H}, w) has the weighted star property at an element x of $U(\mathcal{H})$, then $\mathcal{S}_{\mathcal{F},k}$ has the star property at (x, 1).

This lemma is proved in the next section.

If a family \mathcal{F} is compressed with respect to an element x of $U(\mathcal{F})$ and $w(F) \leq w(\lambda_{x,y}(F))$ for any $F \in \mathcal{F}$ and any $y \in U(\mathcal{F})$, then we say that x is a *dominant element of* $U(\mathcal{F})$ under w.

The following is our main result, which establishes Conjecture 4.1 for the case when $U(\mathcal{H})$ has a dominant element under w.

Theorem 4.4 Let \mathcal{H} be a hereditary family, and let $w: \mathcal{H} \to \mathbb{R}$ such that $w(H) \ge w(H')$ for any $H, H' \in \mathcal{H}$ with $H \subseteq H'$. If $U(\mathcal{H})$ has a dominant element x under w, then (\mathcal{H}, w) has the weighted star property at x.

Proof. We use induction on $|U(\mathcal{H})|$. The case $|U(\mathcal{H})| \leq 2$ is trivial, so we assume $|U(\mathcal{H})| > 2$. Suppose $U(\mathcal{H})$ has a dominant element x under w. Let \mathcal{A} be an intersecting sub-family of \mathcal{H} . Let $y \in U(\mathcal{H}) \setminus \{x\}$, and let $\mathcal{B} = \Lambda_{x,y}(\mathcal{A})$. So \mathcal{B} is intersecting. Since x is a dominant element of $U(\mathcal{H})$ under w, we have $\mathcal{B} \subset \mathcal{H}$ and $w(\mathcal{A}) \leq w(\mathcal{B})$.

Let $\mathcal{I} = \mathcal{H}\langle y \rangle$, $\mathcal{I}' = \{I \setminus \{y\} \colon I \in \mathcal{I}\}$ and $\mathcal{J} = \mathcal{H} \setminus \mathcal{H}\langle y \rangle = \{H \in \mathcal{H} \colon y \notin H\}$. Since \mathcal{H} is hereditary, \mathcal{I}' and \mathcal{J} are hereditary, and $\mathcal{I}' \subseteq \mathcal{J}$. Define $v \colon \mathcal{I}' \to \mathbb{R}$ by $v(I) = w(I \cup \{y\})$ $(I \in \mathcal{I}')$; so $v(I) \ge v(I')$ for any $I, I' \in \mathcal{I}'$ with $I \subseteq I'$. Note that x is a dominant element of $U(\mathcal{I}')$ under v and that x is a dominant element of $U(\mathcal{J})$ under w.

Let $C = \{B \in \mathcal{B}\langle y \rangle : x \in B, B \cap B' = \{y\} \text{ for some } B' \in \mathcal{B}\langle y \rangle\}$ and $\mathcal{D} = \mathcal{B}\langle y \rangle \backslash C$. Let $C' = \{C \setminus \{y\} : C \in C\}, \mathcal{D}' = \{D \setminus \{y\} : D \in \mathcal{D}\}$ and $\mathcal{E} = \mathcal{B} \setminus \mathcal{B}\langle y \rangle = \{B \in \mathcal{B} : y \notin B\}$. So $C', \mathcal{D}' \subseteq \mathcal{I}'$ and $\mathcal{E} \subseteq \mathcal{J}$. Taking $\mathcal{F} = C' \cup \mathcal{E}$, we have $\mathcal{F} \subseteq \mathcal{J}$ as $\mathcal{I}' \subseteq \mathcal{J}$.

Suppose $A \cap B = \{y\}$ for some $A, B \in \mathcal{D}$. Then, by definition of \mathcal{D} , we have $x \notin A$ and $x \notin B$. Since $\mathcal{B} = \Lambda_{x,y}(\mathcal{A}), \lambda_{x,y}(B) \in \mathcal{B}$. But $A \cap \lambda_{x,y}(B) = \emptyset$, which is a contradiction as \mathcal{B} is intersecting. So $(A \cap B) \setminus \{y\} \neq \emptyset$ for any $A, B \in \mathcal{D}$. It follows that \mathcal{D}' is intersecting.

Suppose $A \cap B = \emptyset$ for some $A, B \in \mathcal{F}$. Since \mathcal{E} is an intersecting family (as $\mathcal{E} \subseteq \mathcal{B}$) and each set in \mathcal{C}' contains x, one of A and B is in \mathcal{E} and the other is in \mathcal{C}' ; say $A \in \mathcal{E}$ and $B \in \mathcal{C}'$. But then $A \cap (B \cup \{y\}) = \emptyset$ and $A, B \cup \{y\} \in \mathcal{B}$, which is a contradiction as \mathcal{B} is intersecting. So \mathcal{F} is intersecting.

Since $|U(\mathcal{I}')|$ and $|U(\mathcal{J})|$ are at most $|U(\mathcal{H}) \setminus \{y\}| = |U(\mathcal{H})| - 1$, we can now apply the inductive hypothesis to obtain $v(\mathcal{D}') \leq v(\mathcal{I}'\langle x \rangle)$ and $w(\mathcal{F}) \leq w(\mathcal{J}\langle x \rangle)$. Since $v(\mathcal{D}') = w(\mathcal{D})$ and $v(\mathcal{I}'\langle x \rangle) = w(\mathcal{I}\langle x \rangle)$, we have $w(\mathcal{D}) \leq w(\mathcal{I}\langle x \rangle)$.

Suppose $\mathcal{C}' \cap \mathcal{E}$ contains a set A. So $A \in \mathcal{B}$. Let $B = A \cup \{y\}$. Then $B \in \mathcal{C}$ and hence $B \cap B' = \{y\}$ for some $B' \in \mathcal{B}$. But then $A \cap B' = \emptyset$, which is a contradiction since \mathcal{B} is intersecting. So $\mathcal{C}' \cap \mathcal{E} = \emptyset$ and hence $|\mathcal{F}| = |\mathcal{C}'| + |\mathcal{E}|$. Therefore $w(\mathcal{F}) = w(\mathcal{C}') + w(\mathcal{E})$.

Bringing all the pieces together and noting that $w(\mathcal{C}) \leq w(\mathcal{C}')$ (by the condition on w), we obtain

$$w(\mathcal{A}) \le w(\mathcal{B}) = w(\mathcal{C}) + w(\mathcal{D}) + w(\mathcal{E}) \le w(\mathcal{C}') + w(\mathcal{I}\langle x \rangle) + w(\mathcal{E})$$
$$= w(\mathcal{I}\langle x \rangle) + w(\mathcal{F}) \le w(\mathcal{I}\langle x \rangle) + w(\mathcal{J}\langle x \rangle) = w(\mathcal{H}\langle x \rangle)$$

as required.

The argument in the above proof is an alternative for the one used by Snevily [24] for the proof of Theorem 2.2 (and which employs Theorem 2.3); note that Theorem 2.2 follows from Theorem 4.4 by taking w(H) = 1 for all $H \in \mathcal{H}$. Theorem 3.2 follows from Theorem 4.4 via Lemma 4.3. Theorem 4.4 also has the following consequence.

Corollary 4.5 (See [1, 14]) Let $w: 2^{[n]} \to \mathbb{R}$ such that $w(A) \ge w(B)$ for any $A, B \in 2^{[n]}$ with $|A| \le |B|$. Then $(2^{[n]}, w)$ has the weighted star property at any element of [n].

Proof. Obviously $2^{[n]}$ is hereditary and w obeys the condition in Theorem 4.4. Now let $x \in [n]$. Let $C \in 2^{[n]}$, $y \in [n]$, $D = \lambda_{x,y}(C)$. Since |D| = |C|, the condition on w gives us $w(D) \ge w(C)$ and $w(C) \ge w(D)$; hence $w(C) = w(\lambda_{x,y}(C))$. So x is a dominant element of $U(2^{[n]}) = [n]$ under w. The result now follows by Theorem 4.4.

A nice application of this result is given in [18].

5 Proof of Lemma 4.3

For an *n*-set $X = \{x_1, ..., x_n\}$ and $(a, b) \in X \times [k]$, let $\delta_{a,b} \colon \mathcal{S}_{2^X,k} \to \mathcal{S}_{2^X,k}$ be defined by

$$\delta_{a,b}(A) = \begin{cases} (A \setminus \{(a,b)\}) \cup \{(a,1)\} & \text{if } (a,b) \in A; \\ A & \text{otherwise,} \end{cases}$$

and let $\Delta_{a,b}: 2^{\mathcal{S}_{2^X,k}} \to 2^{\mathcal{S}_{2^X,k}}$ be the compression operation defined by

$$\Delta_{a,b}(\mathcal{A}) = \{ \delta_{a,b}(A) \colon A \in \mathcal{A}, \delta_{a,b}(A) \notin \mathcal{A} \} \cup \{ A \in \mathcal{A} \colon \delta_{a,b}(A) \in \mathcal{A} \}.$$

Note that $|\Delta_{a,b}(\mathcal{A})| = |\mathcal{A}|$ and that, if $\mathcal{F} \subseteq 2^X$ such that $\mathcal{A} \subseteq \mathcal{S}_{\mathcal{F},k}$, then $\Delta_{a,b}(\mathcal{A}) \subseteq \mathcal{S}_{\mathcal{F},k}$. As in the case of $\Lambda_{x,y}$, $\Delta_{a,b}(\mathcal{A})$ is intersecting if \mathcal{A} is intersecting; moreover, the following holds (see, for example, [7, Corollary 3.2]).

Lemma 5.1 Let X be an n-set $\{x_1, ..., x_n\}$, and let $k \ge 2$ be an integer. Let \mathcal{A} be an intersecting sub-family of $\mathcal{S}_{2^X,k}$, and let

$$\mathcal{A}^* = \Delta_{x_n,k} \circ \ldots \circ \Delta_{x_n,2} \circ \ldots \circ \Delta_{x_1,k} \circ \ldots \circ \Delta_{x_1,2}(\mathcal{A}).$$

Then $A \cap B \cap (X \times [1]) \neq \emptyset$ for any $A, B \in \mathcal{A}^*$.

Proof of Lemma 4.3. (i) Trivial.

(ii) Let $H, H' \in \mathcal{H}$ with $H \subseteq H'$. Then $\mathcal{F}_{H'} \subseteq \mathcal{F}_H$. We have

$$w(H') = \sum_{F \in \mathcal{F}_{H'}} |\{S \in \mathcal{S}_{F,k} \colon S \cap (F \times [1]) = H' \times [1]\}| = \sum_{F \in \mathcal{F}_{H'}} (k-1)^{|F| - |H'|} \le \sum_{F \in \mathcal{F}_{H}} (k-1)^{|F| - |H|} \le \sum_{F \in \mathcal{F}_{H}} (k-1)^{|F| - |H|} = \sum_{F \in \mathcal{F}_{H}} |\{S \in \mathcal{S}_{F,k} \colon S \cap (F \times [1]) = H \times [1]\}| = w(H).$$

(iii) Let \mathcal{A} be an intersecting sub-family of $\mathcal{S}_{\mathcal{F},k}$. Let \mathcal{A}^* be as in Lemma 5.1 with $X = U(\mathcal{F})$. Then $\mathcal{A}^* \subseteq \mathcal{S}_{\mathcal{F},k}$. Let $\mathcal{B} = \{H \in \mathcal{H} : A \cap (X \times [1]) = H \times [1] \text{ for some } A \in \mathcal{A}^* \}$. By Lemma 5.1, \mathcal{B} is an intersecting sub-family of \mathcal{H} . Since $\mathcal{A}^* \subseteq \mathcal{S}_{\mathcal{F},k}$, we have $\mathcal{A}^* \subseteq \bigcup_{B \in \mathcal{B}} \bigcup_{F \in \mathcal{F}_B} \{S \in \mathcal{S}_{F,k} : S \cap (F \times [1]) = B \times [1]\}$. So $|\mathcal{A}^*| \leq \sum_{B \in \mathcal{B}} w(B) = w(\mathcal{B})$ and hence, since $|\mathcal{A}| = |\mathcal{A}^*|$, $|\mathcal{A}| \leq w(\mathcal{B})$.

Now suppose (\mathcal{H}, w) has the weighted star property at an element x of $U(\mathcal{H})$. Then $w(\mathcal{B}) \leq w(\mathcal{H}\langle x \rangle)$. We have

$$w(\mathcal{H}\langle x\rangle) = \sum_{H \in \mathcal{H}\langle x\rangle} w(H) = \sum_{H \in \mathcal{H}\langle x\rangle} \left| \bigcup_{F \in \mathcal{F}_H} \{S \in \mathcal{S}_{F,k} \colon S \cap (F \times [1]) = H \times [1]\} \right|$$
$$= \left| \bigcup_{H \in \mathcal{H}\langle x\rangle} \bigcup_{F \in \mathcal{F}_H} \{S \in \mathcal{S}_{F,k} \colon S \cap (F \times [1]) = H \times [1]\} \right| = |\mathcal{S}_{\mathcal{F},k}\langle (x,1)\rangle|$$

Thus, since $|\mathcal{A}| \leq w(\mathcal{B}) \leq w(\mathcal{H}\langle x \rangle)$, we have $|\mathcal{A}| \leq |\mathcal{S}_{\mathcal{F},k}\langle (x,1) \rangle|$. Hence the result. \Box

References

- [1] R. Ahlswede, G.O.H. Katona, Contributions to the geometry of Hamming spaces, Discrete Math. 17 (1977) 1-22.
- [2] C. Berge, A theorem related to the Chvátal conjecture, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), pp. 35-40. Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man., 1976.
- [3] C. Berge, Nombres de coloration de l'hypergraphe h-parti complet, in: Hypergraph Seminar (Columbus, Ohio 1972), Lecture Notes in Math., Vol. 411, Springer, Berlin, 1974, 13-20.

- [4] B. Bollobás, I. Leader, An Erdős-Ko-Rado theorem for signed sets, Comput. Math. Appl. 34 (1997) 9-13.
- [5] P. Borg, Extremal t-intersecting sub-families of hereditary families, J. London Math. Soc. 79 (2009) 167-185.
- [6] P. Borg, Intersecting systems of signed sets, Electron. J. Combin. 14 (2007) #R41.
- [7] P. Borg, On t-intersecting families of signed sets and permutations, Discrete Math. 309 (2009) 3310-3317.
- [8] V. Chvátal, http://users.encs.concordia.ca/~chvatal/conjecture.html.
- [9] V. Chvátal, Unsolved Problem No. 7, in: C. Berge, D.K. Ray-Chaudhuri (Eds.), Hypergraph Seminar, Lecture Notes in Mathematics, Vol. 411, Springer, Berlin, 1974.
- [10] V. Chvátal, Intersecting families of edges in hypergraphs having the hereditary property, in: C. Berge, D.K. Ray-Chaudhuri (Eds.), Hypergraph Seminar, Lecture Notes in Mathematics, Vol. 411, Springer, Berlin, 1974, pp. 61-66.
- M. Deza, P. Frankl, The Erdős-Ko-Rado theorem 22 years later, SIAM J. Algebraic Discrete Methods 4 (1983) 419-431.
- [12] K. Engel, An Erdős-Ko-Rado theorem for the subcubes of a cube, Combinatorica 4 (1984) 133-140.
- [13] P.L. Erdős, U. Faigle, W. Kern, A group-theoretic setting for some intersecting Sperner families, Combin. Probab. Comput. 1 (1992) 323-334.
- [14] P.C. Fishburn, P. Frankl, D. Freed, J.C. Lagarias, A.M. Odlyzko, Probabilities for intersecting systems and random subsets of finite sets, SIAM J. Algebr. Discrete Methods 7 (1986) 73-79.
- [15] P. Frankl, The shifting technique in extremal set theory, in: C. Whitehead (Ed.), Combinatorial Surveys, Cambridge Univ. Press, London/New York, 1987, pp. 81-110.
- [16] H.-D.O.F. Gronau, More on the Erdős-Ko-Rado theorem for integer sequences, J. Combin. Theory Ser. A 35 (1983) 279-288.
- [17] F.C. Holroyd and J. Talbot, Graphs with the Erdős-Ko-Rado property, Discrete Math. 293 (2005) 165-176.

- [18] C. Y. Ku, D. Renshaw, Erdős-Ko-Rado theorems for permutations and set partitions, J. Combin. Theory Ser. A 115 (2008) 1008-1020.
- [19] D. Miklós, Some results related to a conjecture of Chvátal, Ph.D. Dissertation, Ohio State University, 1986.
- [20] J.-C. Meyer, Quelques problèmes concernant les cliques des hypergraphes k-complets et q-parti h-complets, in: Hypergraph Seminar (Columbus, Ohio 1972), Lecture Notes in Math., Vol. 411, Springer, Berlin, 1974, 127-139.
- [21] A. Moon, An analogue of the Erdős-Ko-Rado theorem for the Hamming schemes H(n,q), J. Combin. Theory Ser. A 32 (1982) 386-390.
- [22] M.L. Livingston, An ordered version of the Erdős-Ko-Rado Theorem, J. Combin. Theory Ser. A 26 (1979), 162-165.
- [23] J. Schönheim, Hereditary systems and Chvátal's conjecture, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), pp. 537-539. Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man., 1976.
- [24] H.S. Snevily, A new result on Chvátal's conjecture, J. Combin. Theory Ser. A 61 (1992) 137-141.
- [25] D.L. Wang and P. Wang, Some results about the Chvátal conjecture, Discrete Math. 24 (1978) 95-101.
- [26] D.B. West, http://www.math.uiuc.edu/~west/regs/chvatal.html.